
  

Indirect Proofs



  

Logical Negation



  

Negations

● A proposition is a statement that is either true or 
false.

● Some examples:
● If n is an even integer, then n2 is an even integer.
● Ø = ℝ.

● The negation of a proposition X is a proposition that 
is true when X is false and is false when X is true.

● For example, consider the proposition “it is snowing 
outside.”
● Its negation is “it is not snowing outside.”
● Its negation is not “it is sunny outside.” ⚠
● Its negation is not “we’re in the Bay Area.” ⚠



  

How do you fnd the negation
of a statement?



  

“All My Friends Are Taller Than Me”

Me My Friends



  

The negation of the universal statement

Every P is a Q

is the existential statement

There is a P that is not a Q.



  

The negation of the universal statement

For all x, P(x) is true.

is the existential statement

There exists an x where P(x) is false.



  

“Some Friend Is Shorter Than Me”

Me My Friends



  

The negation of the existential statement

There exists a P that is a Q

is the universal statement

Every P is not a Q.



  

The negation of the existential statement

There exists an x where P(x) is true

is the universal statement

For all x, P(x) is false.



  

Your Turn!

● What’s the negation of the following 
statement?

“Every brown dog
loves every orange cat.”

● Answer:

“There is a brown dog
that doesn’t love
some orange cat”



  

Proof by Contradiction



  

Door 3

There’s something hidden behind one of these doors.
Which door is it hidden behind?

Even without opening this 
door, we know whatever is 
hidden has to be here.

Even without opening this 
door, we know whatever is 
hidden has to be here.



  

Every statement in mathematics is either true or false.
If statement P is not false, what does that tell you?

The Door
of

Truth

Even without opening this 
door, we know P has to be 

here.

Even without opening this 
door, we know P has to be 

here.



  

A proof by contradiction shows
that some statement P is true by

showing that P isn’t false.



  

Proof by Contradiction

● Key Idea: Prove a statement P is true by 
showing that it isn’t false.

● First, assume that P is false. The goal is to 
show that this assumption is silly.

● Next, show this leads to an impossible result.
● For example, we might have that 1 = 0, that 

x ∈ S and x ∉ S, that a number is both even and 
odd, etc.

● Finally, conclude that since P can’t be false, 
we know that P must be true.



  

An Example: Set Cardinalities



  

Set Cardinalities

● We’ve seen sets of many diferent cardinalities:
● |Ø| = 0
● |{1, 2, 3}| = 3
● |{ n ∈ ℕ | n < 137 }| = 137
● |ℕ| = ₀.ℵ
● | (ℕ)| > |ℕ|℘

● These span from the fnite up through the infnite.
● Question: Is there a “largest” set? That is, is 

there a set that’s bigger than every other set?



  

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set (℘ S). By Cantor’s 
Theorem, we know that |S| < | (℘ S)|, so (℘ S) is a 
larger set than S. This contradicts the fact that S 
is the largest set.

We’ve reached a contradiction, so our 
assumption must have been wrong. Therefore, 
there is no largest set. ■

To prove this statement by contradiction, 
we’re going to assume its negation.

What is the negation of the statement
“there is no largest set?”

One option: “there is a largest set.”

To prove this statement by contradiction, 
we’re going to assume its negation.

What is the negation of the statement
“there is no largest set?”

One option: “there is a largest set.”



  

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set (℘ S). By Cantor’s 
Theorem, we know that |S| < | (℘ S)|, so (℘ S) is a 
larger set than S. This contradicts the fact that S 
is the largest set.

We’ve reached a contradiction, so our 
assumption must have been wrong. Therefore, 
there is no largest set. ■

Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifcally, we're assuming.

This helps the reader understand where we're 
going. Remember – proofs are meant to be 
read by other people!

Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifcally, we're assuming.

This helps the reader understand where we're 
going. Remember – proofs are meant to be 
read by other people!



  

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set (℘ S). By Cantor’s 
Theorem, we know that |S| < | (℘ S)|, so (℘ S) is a 
larger set than S. This contradicts the fact that S 
is the largest set.

We’ve reached a contradiction, so our 
assumption must have been wrong. Therefore, 
there is no largest set. ■



  

Theorem: There is no largest set.

Proof: Assume for the sake of contradiction that
there is a largest set; call it S.

Now, consider the set (℘ S). By Cantor’s 
Theorem, we know that |S| < | (℘ S)|, so (℘ S) is a 
larger set than S. This contradicts the fact that S 
is the largest set.

We’ve reached a contradiction, so our 
assumption must have been wrong. Therefore, 
there is no largest set. ■

The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what you are assuming is the negation of the statement to prove.
   3. Say you have reached a contradiction and what the contradiction means.
 

In CS103, please include all these steps in your proofs!

The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what you are assuming is the negation of the statement to prove.
   3. Say you have reached a contradiction and what the contradiction means.
 

In CS103, please include all these steps in your proofs!



  

Time-Out for Announcements!



  

  Readings for Today   

● On the course website we have some information you should 
look over.

● First is the Proofwriting Checklist. It contains information 
about style expectations for proofs. We’ll be using this when 
grading, so be sure to read it over.

● We’ve put together a Guide to Proofs and a Guide to 
Proofs on Sets that summarize the proofwriting techniques 
from Wednesday and today. 

● Next is the Guide to Ofice Hours, which talks about how 
our ofice hours work and how to make the most efective 
use of them.

● Finally is the Guide to LaTeX, which explains how to use 
LaTeX to typeset your problem sets in a way that’s so 
beautiful it will bring tears to your eyes.



  

Problem Set One

● Problem Set Zero was due at 4:00PM today.
● Problem Set One goes out today. It’s due next 

Friday at 4:00PM.
● Explore the language of set theory and better 

intuit how it works.
● Learn more about the structure of mathematical 

proofs.
● Write your frst “freehand” proofs based on your 

experiences.
● As always, reach out if you have any 

questions!



  

Submitting Assignments

● All assignments should be submitted through GradeScope.
● The programming portion of the assignment gets submitted separately 

from the written component.
● The written component must be typed up; handwritten solutions don’t 

scan well and get mangled in GradeScope.
● Because submission times are recorded automatically, we're 

strict about the submission deadlines.
● Very good idea: Leave at least two hours bufer time for your frst 

assignment submission, just in case something goes wrong.
● Very bad idea: Wait until the last minute to submit.

● However, we are pretty generous with how we grade. Your 
score on the problem sets is the square root of your raw score. 
So an 81% maps to a 90%, a 50% maps to a 71%, etc. This gives 
a huge boost even if you need to turn something in that isn’t 
done.



  

Getting Help

● It is completely normal in this class to need 
to get help from time to time.

● Feel free to ask clarifying and conceptual 
questions on EdStem.

● Need more structured help? We have ofice 
hours! Feel free to stop on by.
● Check out the online “Guide to Ofice Hours” for 

more information about how our ofice hours 
system works.

● The OH calendar is available on the course 
website.



  

Back to CS103!



  
An implication is a statement of the form

“If P is true, then Q is true.”

If n is an even integer, then n2 is an even integer.

This part of the 
implication is called 
the antecedent.

This part of the 
implication is called 
the antecedent.

This part of the 
implication is 
called the 
consequent.

This part of the 
implication is 
called the 
consequent.



  
An implication is a statement of the form

“If P is true, then Q is true.”

If n is an even integer, then n2 is an even integer.

If m and n are odd integers, then m+n is even.

If you like the way you look that much,
then you should go and love yourself.



  

What Implications Mean

“If there's a rainbow in the sky,
then it's raining somewhere.”

● In mathematics, implication is directional.
● The above statement doesn't mean that if it's raining 

somewhere, there has to be a rainbow.
● In mathematics, implications only say something 

about the consequent when the antecedent is true.
● If there's no rainbow, it doesn't mean there's no rain.

● In mathematics, implication says nothing about 
causality.
● Rainbows do not cause rain. 



  

What Implications Mean

● In mathematics, a statement of the form

For any x, if P(x) is true, then Q(x) is true

means that any time you fnd an object x 
where P(x) is true, you will see that Q(x) is 
also true (for that same x).

● There is no discussion of causation here. It 
simply means that if you fnd that P(x) is 
true, you'll fnd that Q(x) is also true.



  

Implication, Diagrammatically

Set of objects x where
Q(x) is true.

Set of objects x where
P(x) is true.

Any time P is 
true, Q is 

true as well.

Any time P is 
true, Q is 

true as well.

If P isn't 
true, Q may 
or may not 
be true.

If P isn't 
true, Q may 
or may not 
be true.



  

How do you negate an implication?



  

Story Time!



  

Nanni Ea-Nasir

Ancient Contract:
  

If Nanni pays money to Ea-Nasir, then
Ea-Nasir will give Nanni quality copper ingots.

Question: What has to happen for this contract to be broken?
Answer: Nanni pays Ea-Nasir and doesn’t get quality copper ingots.

$

I’m going to complain about this!
(That’s a hyperlink. Click it.)

https://en.wikipedia.org/wiki/Complaint_tablet_to_Ea-nasir


  

The negation of the statement
  

“For any x, if P(x) is true,
then Q(x) is true”

  

is the statement
  

“There is at least one x where
P(x) is true and Q(x) is false.”

  

The negation of an implication
is not an implication!



If p is a puppy,
then I do love p!

       ❤�

If p is a puppy,
then I don’t love p!

❤�

It’s
complicated.

❤�



  

How to Negate Universal Statements:

“For all x, P(x) is true”

becomes

“There is an x where P(x) is false.”

How to Negate Existential Statements:

“There exists an x where P(x) is true”

becomes 

“For all x, P(x) is false.”

How to Negate Implications:

“For every x, if P(x) is true, then Q(x) is true”

becomes

“There is an x where P(x) is true and Q(x) is false.”



  

Times where
P is true

Times where
Q is true

If P is true, then Q is true.

If Q is false, then P is false.

Anything inside this 
inner bubble is also 
inside the outer 

bubble.

Anything inside this 
inner bubble is also 
inside the outer 

bubble.

Anything outside 
this outer bubble is 
outside the inner 

bubble.

Anything outside 
this outer bubble is 
outside the inner 

bubble.



  

The Contrapositive

● The contrapositive of the implication

If P is true, then Q is true

is the implication

If Q is false, then P is false.
● The contrapositive of an implication means 

exactly the same thing as the implication itself.

If it’s a puppy, then I love it.

If I don’t love it, then it’s not a puppy.



  

The Contrapositive

● The contrapositive of the implication

If P is true, then Q is true

is the implication

If Q is false, then P is false.
● The contrapositive of an implication means 

exactly the same thing as the implication itself.

If I store cat food inside, then raccoons won’t steal it.

If raccoons stole the cat food, then I didn’t store it inside.



  

To prove the statement
 

“if P is true, then Q is true,”
 

you can choose to instead prove the 
equivalent statement

 

“if Q is false, then P is false,”
 

if that seems easier. 

This is called a proof by contrapositive.



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■

This is a courtesy to the 
reader and says “heads up! 
we’re not going to do a 

regular old-fashioned direct 
proof here.”

This is a courtesy to the 
reader and says “heads up! 
we’re not going to do a 

regular old-fashioned direct 
proof here.”



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■

What is the contrapositive of this statement?

if n2 is even, then n is even.

If n is odd, then n2 is odd.

What is the contrapositive of this statement?

if n2 is even, then n is even.

If n is odd, then n2 is odd.



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■

Here, we're explicitly writing out 
the contrapositive. This tells the 

reader what we're going to 
prove. It also acts as a sanity 

check by forcing us to write out 
what we think the contrapositive 

is.

Here, we're explicitly writing out 
the contrapositive. This tells the 

reader what we're going to 
prove. It also acts as a sanity 

check by forcing us to write out 
what we think the contrapositive 

is.



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■

We've said that we're going 
to prove this new 

implication, so let's go do 
it! The rest of this proof 

will look a lot like a standard 
direct proof.

We've said that we're going 
to prove this new 

implication, so let's go do 
it! The rest of this proof 

will look a lot like a standard 
direct proof.



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
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n2 = 2(2k2 + 2k) + 1.
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(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■

The general pattern here is the following:

1. Start by announcing that we're going to 
use a proof by contrapositive so that the 

reader knows what to expect.

2. Explicitly state the contrapositive of what 
we want to prove.

3. Go prove the contrapositive.

The general pattern here is the following:

1. Start by announcing that we're going to 
use a proof by contrapositive so that the 

reader knows what to expect.

2. Explicitly state the contrapositive of what 
we want to prove.

3. Go prove the contrapositive.



  

Biconditionals

● The previous theorem, combined with what we saw on 
Wednesday, tells us the following:

For any integer n, if n is even, then n2 is even.

For any integer n, if n2 is even, then n is even.
● These are two diferent implications, each going the 

other way.
● We use the phrase if and only if to indicate that two 

statements imply one another.
● For example, we might combine the two above 

statements to say

for any integer n: n is even if and only if n2 is even.



  

Proving Biconditionals

● To prove a theorem of the form

P if and only if Q,

you need to prove two separate statements.
● First, that if P is true, then Q is true.
● Second, that if Q is true, then P is true.

● You can use any proof techniques you'd like 
to show each of these statements.
● In our case, we used a direct proof for one and 

a proof by contrapositive for the other.



  

Proofs on Sets



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

This is the element-of relation ∈. It 
means that this object x is one of the 

items inside these sets.

This is the element-of relation ∈. It 
means that this object x is one of the 

items inside these sets.



  

Set Combinations

● So far, we’ve seen four ways of combining 
sets together.

● The above pictures give a holistic sense of 
how these operations work.

● However, mathematical proofs tend to 
work on sets in a diferent way.

S ∪ T S ∩ T S – T S Δ T



  

Important Fact:
 

Proofs about sets almost always focus on 
individual elements of those sets. It’s rare 
to talk about how collections relate to one 

another “in general.”



  

S ∪ T

Set Union

Defnition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T

 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T.
 

If you assume that x ∈ S ∪ T:
    Consider two cases: 

Case 1: x ∈ S.
Case 2: x ∈ T.

Defnition: The set S ∪ T is the set where, for any x:
x ∈ S ∪ T      when     x ∈ S or x ∈ T

 

To prove that x ∈ S ∪ T:
    Prove either that x ∈ S or that x ∈ T.
 

If you assume that x ∈ S ∪ T:
    Consider two cases: 

Case 1: x ∈ S.
Case 2: x ∈ T.



  

S ∩ T

Set Intersection

Defnition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.
 

If you assume that x ∈ S ∩ T:
    Assume x ∈ S and x ∈ T.

Defnition: The set S ∩ T is the set where, for any x:
x ∈ S ∩ T      when     x ∈ S and x ∈ T

 

To prove that x ∈ S ∩ T:
    Prove both that x ∈ S and that x ∈ T.
 

If you assume that x ∈ S ∩ T:
    Assume x ∈ S and x ∈ T.



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

A B

C

1
2

3
4

5

Let’s Try Some Examples!

x = 1

Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

✔ ✘ ✘

✔ ✘ ✘ ✘



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A = {1, 2, 3}
B = {2, 3, 4}
C = {3, 4, 5}

A B

C

1
2

3

5

Let’s Try Some Examples!

x = 2

Is x ∈ (A ∩ B) ∪ C?

Is x ∈ (A ∪ C) ∩ (B ∪ C)?

✔ ✔ ✘

✔ ✘ ✔ ✘

4



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)
Goal: pick 

elements inside 
of this shape…

Goal: pick 
elements inside 
of this shape…

…and explain why 
they also have to 
be in this shape.

…and explain why 
they also have to 
be in this shape.

x

Let’s Draw Some Pictures!



  

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!

If we pick x from 
the left-hand 

diagram, then x is 
in A ∩ B or x is in 

C (or both).

If we pick x from 
the left-hand 

diagram, then x is 
in A ∩ B or x is in 

C (or both).



  

A B

C

A ∩ B A B

C

(B ∪ C)(A ∪ C)

First, imagine 
picking something 

from A ∩ B.

First, imagine 
picking something 

from A ∩ B.

x

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!

A B
A ∩ B A B

C

x

(A ∪ C)

C



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B
A ∩ B A B

x

C

(B ∪ C)

C

Let’s Draw Some Pictures!



  

A B A B

C

(B ∪ C)(A ∪ C)

Otherwise, we 
have to pick 

from C.

Otherwise, we 
have to pick 

from C.

xC

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B A B

CxC

(A ∪ C)

Let’s Draw Some Pictures!



  
Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).

A B A B

CxC

(B ∪ C)

Let’s Draw Some Pictures!



  

Theorem: If A, B, and C are sets, then for any
x ∈ (A ∩ B) ∪ C, we have x ∈ (A ∪ C) ∩ (B ∪ C).



  

Theorem: If A, B, and C are sets, then for any x ∈ (A ∩ B) ∪ C,
we have x ∈ (A ∪ C) ∩ (B ∪ C).
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To prove that
this is true…

If you assume
this is true…

x ∈ S ∩ T

X ∈ ℘(A)

Prove x ∈ A.
Then prove x ∈ B.

Assume x ∈ A.
Then assume x ∈ B.

Prove X ⊆ A. Assume X ⊆ A.

Is defned
as…

x ∈ S and x ∈ T

X ⊆ A.

x ∈ S ∪ T Prove either x ∈ S
or that x ∈ T.

Consider two cases:
Case 1: x ∈ S.
Case 2: x ∈ T.

x ∈ S or x ∈ T

S ⊆ T

S = T

Pick an arbitrary
x ∈ S. Prove x ∈ T.

Initially, do nothing.
Once you fnd some

x ∈ S, conclude x ∈ T.

Prove S ⊆ T.
Then prove T ⊆ S.

Assume S ⊆ T
and T ⊆ S.

For every x ∈ S, 
we have x ∈ T

S ⊆ T and T ⊆ S

For more details, see the Guide to Proofs on Sets.



  

Next Time

● Mathematical Logic
● How do we formalize the reasoning from our 

proofs?
● Propositional Logic

● Reasoning about simple statements.
● Propositional Equivalences

● Simplifying complex statements.



  

Appendix: Proving Implications by 
Contradiction



  

Proving Implications

● Suppose we want to prove this implication:

If P is true, then Q is true.
● We have three options available to us:

● Direct Proof: 

Assume P is true, then prove Q is true.
● Proof by Contrapositive.

Assume Q is false, then prove that P is false.
● Proof by Contradiction.

… what does this look like?



  

Theorem: For any integer n, if n2 is even, then n is even.
Proof: Assume for the sake of contradiction that n is an

integer and that n2 is even, but that n is odd.
 

Since n is odd we know that there is an integer k such
that

 

n = 2k + 1 (1)
 

Squaring both sides of equation (1) and simplifying
gives the following:

 

  n2 = (2k + 1)2

= 4k2 + 4k + 1
= 2(2k2 + 2k) + 1 (2)

 

Equation (2) tells us that n2 is odd, which is impossible;
by assumption, n2 is even.

 

We have reached a contradiction, so our assumption
must have been incorrect. Thus if n is an integer and
n2 is even, n is even as well. ■

What is the negation of our theorem?What is the negation of our theorem?
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The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what the negation of the original statement is.
   3. Say you have reached a contradiction and what the
      contradiction entails.
 

In CS103, please include all these steps in your proofs!

The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what the negation of the original statement is.
   3. Say you have reached a contradiction and what the
      contradiction entails.
 

In CS103, please include all these steps in your proofs!



  

Proving Implications

● Suppose we want to prove this implication:

If P is true, then Q is true.
● We have three options available to us:

● Direct Proof: 

Assume P is true, then prove Q is true.
● Proof by Contrapositive.

Assume Q is false, then prove that P is false.
● Proof by Contradiction.

Assume P is true and Q is false,
then derive a contradiction.
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